107 research outputs found

    Pathway and Network Analysis of Transcriptomic and Genomic Data

    Get PDF
    Department of Biological SciencesThe development of high-throughput technologies has enabled to produce omics data and it has facilitated the systemic analysis of biomolecules in cells. In addition, thanks to the vast amount of knowledge in molecular biology accumulated for decades, numerous biological pathways have been categorized as gene-sets. Using these omics data and pre-defined gene-sets, the pathway analysis identifies genes that are collectively altered on a gene-set level under a phenotype. It helps the biological interpretation of the phenotype, and find phenotype-related genes that are not detected by single gene-based approach. Besides, the high-throughput technologies have contributed to construct various biological networks such as the protein-protein interactions (PPIs), metabolic/cell signaling networks, gene-regulatory networks and gene co-expression networks. Using these networks, we can visualize the relationships among gene-set members and find the hub genes, or infer new biological regulatory modules. Overall, this thesis/dissertation describes three approaches to enhance the performance of pathway and/or network analysis of transcriptomic and genomic data. First, a simple but effective method that improves the gene-permuting gene-set enrichment analysis (GSEA) of RNA-sequencing data will be addressed, which is especially useful for small replicate data. By taking absolute statistic, it greatly reduced the false positive rate caused by inter-gene correlation within gene-sets, and improved the overall discriminatory ability in gene-permuting GSEA. Next, a powerful competitive gene-set analysis tool for GWAS summary data, named GSA-SNP2, will be introduced. The z-score method applied with adjusted gene score greatly improved sensitivity compared to existing competitive gene-set analysis methods while exhibiting decent false positive control. The performance was validated using both simulation and real data. In addition, GSA-SNP2 visualizes protein interaction networks within and across the significant pathways so that the user can prioritize the core subnetworks for further mechanistic study. Finally, a novel approach to predict condition-specific miRNA target network by biclustering a large collection of mRNA fold-change data for sequence-specific targets will be introduced. The bicluster targets exhibited on average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.2%) by filtering them using functional network information. The analysis of cancer-related biclusters revealed that PI3K/Akt signaling pathway is strongly enriched in targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. Among them, five independent prognostic miRNAs were identified, and repressions of bicluster targets and pathway activity by mir-29 were experimentally validated. The BiMIR database provides a useful resource to search for miRNA regulation modules for 459 human miRNAs.clos

    Accounting quality and international accounting convergence

    Get PDF
    Scope and Method of Study: This study empirically examined the functional relationship between financial reporting quality and accounting convergence. The first phase of the examination involved identifying and measuring accounting quality attributes and accounting convergence. Random effect panel regression analyses of all sample countries and sub-sample countries were used to examine whether there is a positive association of accounting convergence with improvement in accounting quality. Notably, all data were collected from publicly available sources.Findings and Conclusions: This study found little evidence of a positive association between accounting convergence and accounting quality improvements. The results with overall sample countries based on a random effect panel regression of the relationship between accounting quality and accounting convergence were mixed.Since the test results with the mixture of converged and non-converged countries were likely to aggregate and wash out the net impact of convergence on quality improvement, sample countries were partitioned into converged countries and non-converged countries. Converged countries were defined differently based on ANOVA and t-tests. Random effect panel regression results with data of converged countries only were qualitatively similar, stronger but still mixed. The results suggested that accounting convergence alone does not necessarily improve accounting quality.This study also found that the relationship between accounting convergence and improvement in accounting quality is not a matter of a country's investor protection, legal system and enforcement, or the level of country's economic development

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury

    Get PDF
    TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI

    GScluster: Network-weighted gene-set clustering analysis

    Get PDF
    Background: Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results: Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions: Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis

    Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets

    Get PDF
    We present a novel approach to identify human microRNA (miRNA) regulatory modules (mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change data for sequence-specific targets. Bicluster targets were assessed using validated messenger RNA (mRNA) targets and exhibited on an average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of targets. We analyzed cancer-specific biclusters and found that the PI3K/Akt signaling pathway is strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and pathway activity by miR-29 was experimentally validated. In total, 29 898 biclusters for 459 human miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues, diseases, keywords and target genes

    Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    Get PDF
    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. ยฉ The Author(s) 20166511sciescopu

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    REGNET: Mining context-specific human transcription networks using composite genomic information

    Get PDF
    Background: Genome-wide expression profiles reflect the transcriptional networks specific to the given cell context. However, most statistical models try to estimate the average connectivity of the networks from a collection of gene expression data, and are unable to characterize the context-specific transcriptional regulations. We propose an approach for mining context-specific transcription networks from a large collection of gene expression fold-change profiles and composite gene-set information.Results: Using a composite gene-set analysis method, we combine the information of transcription factor binding sites, Gene Ontology or pathway gene sets and gene expression fold-change profiles for a variety of cell conditions. We then collected all the significant patterns and constructed a database of context-specific transcription networks for human (REGNET). As a result, context-specific roles of transcription factors as well as their functional targets are readily explored. To validate the approach, nine predicted targets of E2F1 in HeLa cells were tested using chromatin immunoprecipitation assay. Among them, five (Gadd45b, Dusp6, Mll5, Bmp2 and E2f3) were successfully bound by E2F1. c-JUN and the EMT transcription networks were also validated from literature.Conclusions: REGNET is a useful tool for exploring the ternary relationships among the transcription factors, their functional targets and the corresponding cell conditions. It is able to provide useful clues for novel cell-specific transcriptional regulations. The REGNET database is available at http://mgrc.kribb.re.kr/regnet.open0

    Air-stable van der Waals PtTe2 conductors with high current-carrying capacity and strong spin- orbit interaction

    Get PDF
    High-performance van der Waals (vdW) integrated electronics and spintronics require reliable current-carrying capacity. However, it is challenging to achieve high current density and air-stable performance using vdW metals owing to the fast electrical breakdown triggered by defects or oxidation. Here, we report that spin-orbit interacted synthetic PtTe2 layers exhibit significant electrical reliability and robustness in ambient air. The 4-nm-thick PtTe2 synthesized at a low temperature (similar to 400 degrees C) shows intrinsic metallic transport behavior and a weak antilocalization effect attributed to the strong spin-orbit scattering. Remarkably, PtTe2 sustains a high current density approaching approximate to 31.5 MA cm(-2), which is the highest value among electrical interconnect candidates under oxygen exposure. Electrical failure is caused by the Joule heating of PtTe2 rather than defect-induced electromigration, which was achievable by the native TeOx passivation. The high-quality growth of PtTe2 and the investigation of its transport behaviors lay out essential foundations for the development of emerging vdW spin-orbitronics
    • โ€ฆ
    corecore